
What is Application Security? 

Meta: Learn what application security is, and how it is used to protect application software from 

attackers looking to steal sensitive company and customer data. 

Application security (AppSec) is an arm of cybersecurity that focuses on protecting software 

applications using a series of advanced tools and best practices. This includes identifying, fixing, and 

preventing app-based vulnerabilities before attackers can exploit them. 

AppSec is a continuous process that starts early in development and extends well beyond 

deployment, protecting apps from unauthorized access, data breaches, and code manipulation at 

every stage of their lifecycle—not just as an afterthought.  

Why is Application Security Important? 

Whether they’re facing customers or supporting staff behind the scenes, applications are the 

lifeblood of most businesses. Unfortunately, this also makes them prime targets for attackers looking 

to steal sensitive company and customer data.  

The complexity of hybrid networks, open-source software, and distributed supply chains only adds to 

this risk—creating more opportunities for attackers to exploit app-based vulnerabilities. AppSec 

helps organizations protect against these threats, catch vulnerabilities early, and stay compliant with 

strict industry regulations. 

What Types of Applications Need Protecting? 

●​ Web Applications: Web apps are exposed to the internet, making them prime targets for 

attacks like data breaches and injection threats. Strong security measures like encryption and 

regular testing are crucial for keeping them safe. 

●​ Mobile Applications: Mobile apps, which we rely upon for services including work, banking, 

and shopping, hold sensitive corporate and consumer data. Whether native (built for 

platforms like iOS and Android) or web-based, attackers can target mobile apps to gain key 

credentials, financial information, and intellectual property.  

●​ Cloud-Based Applications: When migrating to the cloud, it can be easy to overlook how 

important it is to secure cloud-native apps and their supporting infrastructure. Cloud 

environments are dynamic and can be tricky to manage, which opens the door to risks like 

misconfigurations, unauthorized access, and data leaks. 

●​ Microservices and APIs: Modern apps use microservices and APIs to connect different parts 

of the system. Securing these APIs is key to protecting data and ensuring proper access 

control across your network. 

●​ Legacy Applications: Legacy apps are often overlooked as vulnerabilities. Since they’re 

typically not updated with the latest security patches or modern authorization tools, they’re 

an easy target for attackers looking to breach your network. These "time bomb" apps need 

regular checks and should be decommissioned if they’re no longer in use. 

https://www.algosec.com/blog/navigating-app-security-with-appviz
https://www.algosec.com/blog/securing-cloud-native-environments/
https://www.forbes.com/consent/ketch/?toURL=https://www.forbes.com/councils/forbesbusinesscouncil/2024/10/23/legacy-systems-how-outdated-tech-can-poison-your-business/


Common Application Security Risks 

The Open Web Application Security Project (OWASP) Top Ten is a solid starting point for 

understanding the most common application security risks. These best practices, recognized 

worldwide, help ensure you're tackling the most important vulnerabilities that could affect your 

apps. The OWASP list warns of common application security risks such as: 

Security Risk Examples Impact 

Access and 

Authentication Flaws 

Broken Authentication (OWASP 

A01:2021) 

Attackers exploit weak or missing 

access controls to bypass 

authentication, exposing sensitive 

systems and stealing data. 

Weak Encryption 

and Data Integrity 

Cryptographic Failures (OWASP 

A02:2021) 

Poor encryption practices leave 

sensitive data vulnerable to theft and 

manipulation, compromising trust and 

system operations. 

Exploitable Code and 

Design 

Injection (OWASP A03:2021) 

 

Insecure Design (OWASP 

A04:2021) 

Attackers can use injection flaws or 

weak design to manipulate data, take 

over applications, and disrupt 

business functions. 

Misconfigurations  Security Misconfiguration 

(OWASP A05:2021) 

 

Vulnerable and Outdated 

Components (OWASP A06:2021) 

Misconfigurations in cloud, on-prem, 

and containerized environments—as 

well as unpatched systems—can 

expose known vulnerabilities. 

Monitoring and 

Detection Gaps 

Insufficient Logging and 

Monitoring (OWASP A09:2021) 

 

Server-Side Request Forgery 

(SSRF) (OWASP A10:2021) 

Attackers exploit weak monitoring to 

stay undetected, using flaws like SSRF 

to infiltrate internal systems or 

exfiltrate data. 

What is Application Security Testing? 

To protect your apps, you need to understand their vulnerabilities—and testing is the key. Application 

security testing involves identifying weaknesses that attackers could exploit. It combines manual 

methods and automated tools across the app’s lifecycle to catch any vulnerabilities in code and 

during runtime. Here’s a breakdown of the main types of application security testing: 

 

https://owasp.org/www-project-top-ten/


●​ Static Application Security Testing (SAST): SAST inspects source code, bytecode, or binary 

code for vulnerabilities. It's often used early in the development lifecycle to detect security 

issues before the application is deployed. 

●​ Dynamic Application Security Testing (DAST): DAST analyzes applications while they’re 

running to spot vulnerabilities like injection flaws and insecure configurations. It’s essential 

for catching runtime issues that SAST might miss. 

●​ Interactive Application Security Testing (IAST): IAST combines the strengths of SAST and 

DAST by analyzing code in real-time while it’s running in a test environment. This dual-layer 

insight helps uncover both static and dynamic vulnerabilities. 

●​ Runtime Application Self-Protection (RASP): RASP is a more modern type of testing that 

integrates directly into the application to detect and block threats in real time. It offers a 

dynamic layer of defense during the application’s execution phase. 

●​ Software Composition Analysis (SCA): Scans your application’s third-party components, such 

as libraries and open-source software, to identify vulnerabilities and licensing issues. 

●​ Fuzzing: A technique that inputs random data into apps to find vulnerabilities like crashes or 

memory leaks. It’s typically automated for continuous testing. 

Common Application Security Tools 

●​ Code Analysis Tools: These tools check the app’s code early in development to spot 

vulnerabilities that could turn into security risks. They’re typically integrated into continuous 

integration (CI) workflows to keep security checks running throughout the app’s lifecycle. 

●​ Security Testing Tools: Perform DAST and SAST to identify issues in both running applications 

and static code. 

●​ Container Security Tools: Protect containerized environments like Docker and Kubernetes. 

These tools help ensure that containers are properly configured, free from vulnerabilities, 

and secure by enforcing policies for access control. 

●​ Application Shielding Tools: These tools are designed to secure apps during the execution 

phase, preventing attacks that might otherwise exploit runtime vulnerabilities by obfuscating 

code, encrypting data, and continuously monitoring for security issues. 

Essential Application Security Best Practices 

●​ Integrate Security Early: “Shift left” and prioritize application security at every stage of 

development with regular code reviews, vulnerability scans, and pen tests. 

●​ Strengthen Access and Data Protection: Use strong authentication (like MFA), authorization 

(such as RBAC), and encryption protocols to protect sensitive data, as well as a holistic 

identity and access management (IAM) solution to manage digital identities.  

●​ Build a Solid Defense: Use web application firewalls and patch apps, APIs, and third-party 

components regularly. Educate your team on best practices and use trusted references like 

the OWASP Top Ten for more best practices help. 

●​ Continuously Monitor for Threats: Monitor apps and APIs with real-time logging and tools 

such as identity and access management. Build a threat model to uncover vulnerabilities 

before they escalate into security risks. 

https://www.algosec.com/blog/understanding-and-preventing-kubernetes-threats-and-attacks/
https://www.algosec.com/products/cloud-security-prevasio-kubernetes-container-security


Read more on our top 12 application security best practices here. 

Top Trends in Application Security  

Rise of DevSecOps 

DevSecOps, which ensures security is woven into every stage of the development pipeline, is 

becoming a standard practice. Automated testing tools are also now a staple within continuous 

integration and delivery (CI/CD) workflows to help detect vulnerabilities in real time. 

API Security 

APIs are key to modern apps, especially in microservices, as they enable communication between 

different components. However, this makes them attractive targets for attackers. With more 

breaches involving APIs, companies are increasingly focusing their AppSec efforts here. The API 

security market is expected to grow at a compound annual growth rate (CAGR) of 32.5%, reaching 

around $3 billion by 2028. 

AI-Powered Security 

34% of companies are already using artificial intelligence (AI) tools for application security. They can 

quickly identify patterns, detect threats, and predict vulnerabilities, making AppSec faster and more 

proactive. 

Supply Chain Security  

Attacks like Log4j have made it clear why securing third-party components is so important. 

Organizations are now using dependency management tools, Software Bill of Materials (SBOM), and 

continuous monitoring to secure their software supply chains. 

Application Security Posture Management (ASPM) 

ASPM tools offer a holistic solution for organizations to map and protect their application assets. By 

2026, Gartner predicts that 40% of organizations developing their own apps will be using ASPM tools.  

Master Your Application Security with AlgoSec 

Take charge of your application security with AlgoSec. Gain full visibility across both on-prem and 

cloud environments, simplify your security policies, and fend off sophisticated threats—all from a 

single platform. AlgoSec ensures your applications remain secure, agile, and audit-ready. Book a 

quick demo today. 

FAQ 

What is the OWASP Top 10, and why is it important? 

https://www.algosec.com/solutions/devops#what-is-devops-security-management
https://www.marketsandmarkets.com/Market-Reports/application-programming-interface-api-security-market-203580907.html?utm_campaign=applicationprogramminginterfaceapisecuritymarket&utm_source=abnewswire.com&utm_medium=paidpr
https://www.gartner.com/en/newsroom/press-releases/2023-09-18-gartner-survey-revealed-34-percent-of-organizations-are-already-using-or-implementing-ai-application-security-tools
https://www.ibm.com/topics/log4j
https://www.scworld.com/native/application-security-posture-management-providing-appsec-and-devops-a-big-assist
https://www.algosec.com/lp/request-a-demo
https://www.algosec.com/lp/request-a-demo


The OWASP Top 10 outlines the most critical web application security risks. It’s a must-have reference 

for addressing the latest application vulnerabilities, and it’s updated regularly. 

What are the challenges of application security right now?  

AppSec teams face challenges like securing legacy applications with outdated tech, managing 

complex third-party components, and integrating security into fast-moving DevSecOps workflows. 

There’s also a shortage of skilled AppSec professionals, and many organizations lack the right tools 

for managing (and centralizing) their AppSec operations.  

What is a Software Bill of Materials? 

A Software Bill of Materials (SBOM) lists all the components of an application, including open-source 

libraries. It helps organizations track dependencies and identify vulnerabilities in third-party code. 

How often should applications undergo security testing? 

Testing should be continuous throughout the Software Development Lifecycle (SDLC). Automated 

tools should run regularly, with periodic manual reviews for high-risk applications. 

What’s the difference between application and API security? 

Application security focuses on the overall application, including frontend and backend components. 

API security is a subset of application security, and it specifically targets APIs, ensuring they’re 

protected against vulnerabilities like improper authentication, data exposure, and excessive 

privileges. 


	What is Application Security? 
	Why is Application Security Important? 
	What Types of Applications Need Protecting? 
	Common Application Security Risks 
	What is Application Security Testing? 
	Common Application Security Tools 
	Essential Application Security Best Practices 
	Top Trends in Application Security  
	Rise of DevSecOps 
	API Security 
	AI-Powered Security 
	Supply Chain Security  
	Application Security Posture Management (ASPM) 

	Master Your Application Security with AlgoSec 
	FAQ 


